

Flanged seals with flush diaphragm S-P

Diaphragm seal dimensions

Version	Diaphragm	Contact face	Diameter of	External	Thickness	Diameter	Number
	diameter	diameter	bolt circle	diameter		of holes	of holes
	Dm	d1	K	D	d	L	
DN50 PN40/	59	102	125	165	22	18	4
2"ANSI 150	59	92	120,5	150	20	20	4
DN80 PN40	89	138	160	200	24	18	8
3" ANSI 150	89	127	152,5	190	24	20	4
DN100 PN40	89	162	190	235	24	22	8
4" ANSI 150	89	158	190,5	230	24	20	8

Application

The diaphragm seal is a pressure-transmitting, diaphragm-type device. The pressure signal is sent to the cooperating pressure measuring device (pressure transmitter, pressure gauge) through manometric liquid filling the space between the separating diaphragm of the seal and the pressure measuring device. The diaphragm seal task is to isolate the pressure measuring device from damaging impacts caused by either medium or installation:

- low or high temperature, increased viscosity, impurities;
- vibrations of the installation (remote diaphragm seal).

Recommended minimum measuring range (bar), depending on the type of the set: pressure measuring device - diaphragm seal

Pressure	Diaphragm	Diaphragm seal version			
measuring device	seal type	DN50 / 2"	DN80 / 3"	DN100 / 4"	
Smart	direct	0.10	0.025	0.025	
transmitters*	remote (2 m)	1	0.25	0.25	
PCE-28	direct	0.1	0.1	0.1	
	remote (2 m)	1	0.25	0.25	
Ø63 gauge	direct	1	1	1	
	remote (2 m)	2.5	1	1	
Ø100 gauge	direct	1	1	1	
	remote (2 m)	2.5	1	1	

^{*} The ranges given in the table for the smart transmitters should be taken as set ranges.

Recommendations

The essential metrological problem at diaphragm seals operational use is an absolute thermal zero error, resulting from the thermal expansion of the manometer liquid. The expansion effect must be compensated for with the separating diaphragm flexibility.

To minimise this effect, it is advisable to:

- use capillaries as short as possible, in this way the volume of manometer liquid will be reduced (maximum capillary length for DN50 / 2" is 10m);
- use the greater diameter seals, in order to maximise the separating diaphragm flexibility;
- locate the capillaries in the places, in which the temperature fluctuations will be minimal.

Zero error from ambient temperature change

Diaphragm seal type	Absolute zero error per 10°C for the diaphragm seal		
	DN50 / 2"	DN80/ 3"	DN100 / 4"
direct	0.5 mbar	0.4 mbar	0.4 mbar
remote (2 m capillary)	3 mbar	1 mbar	1 mbar

An additional zero error, resulting from temperature fluctuations in a medium, depends on the temperature gradient in the oil-based diaphragm sealing system. The error value is, in any case, significantly smaller than the error value shown in the table.

Temperature range of measured medium

	Direct diaphragm seal		
Manometric liquid	Underpressure measurements	Overpressure measurements	
very high temperature (DH)	max. 200°C for p > 0,05bar ABS	15380°C	
high temperature (DC)	max. 250°C for p > 0,1bar ABS	-10315°C	-30150°C
low temperature (AK)	not recommended for measurement	-60200°C	
	of pressures < 0,2 bar ABS		
Note: When operating with an am			

Maximum pressure for PN40 – 40 bar Maximum pressure for ANSI 150 – 150 psi Material of diaphragm and flange: 316Lss Important:

- standard outlet capillary from flange:
 direct mounted diaphragm seal - axial
 remote mounted diaphragm seal - radial
 other configuration available on request

Special versions

- Other standard ANSI or DIN
- Filled with edible oil (medium temp. -10...150°C)
- Direct diaphragm seal for medium temp. over 150°C
- Others

Ordering procedure

direct diaphragm seal: pressure measuring device / S-P – DN..... / spec. ver. (description)

remote diaphragm seal: pressure measuring device / S-PK – DN..... /K = m / / spec. ver. (description)

Transmitter or gauge – see the code in the appropriate catalogue sheet

Diaphragm seal version

Capillary length

Mounting of capillary:

AX - axial (standard version)

RD - radial (on request)